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Abstract

We present a finite volume scheme for solving shallow water equations with source term due to the bottom topography.
The scheme has the following properties: it is high-order accurate in smooth wet regions, it correctly solves situations
where dry areas are present, and it is well-balanced. The scheme is developed within a general nonconservative framework,
and it is based on hyperbolic reconstructions of states. The treatment of wet/dry fronts is carried out by solving specific
nonlinear Riemann problems at the corresponding intercells.
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MSC: 65M06; 35L65; 76M12; 76B15

Keywords: Hyperbolic systems; Nonconservative products; High-order schemes; Well-balanced schemes; Roe methods; Shallow water
systems; Wet/dry fronts
1. Introduction

Shallow water equations are widely used in ocean and hydraulic engineering to model flows in rivers, res-
ervoirs or coastal areas, among others applications. In the form considered in this paper, they constitute a
hyperbolic system of conservation laws with a source term due to the bottom topography.

In recent years, there has been increasing interest in the design of numerical schemes with good properties
for shallow water equations (see, e.g. [8,13,26,35–37], and the references therein). It is a challenge to obtain
schemes that compute solutions with high-order accuracy (both in space and time) in the regions where they
are smooth, while at the same time shock discontinuities are properly captured. However, when a source term
is present the schemes must also satisfy a balance between the flux and the source terms, in order to properly
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compute stationary or almost stationary solutions. This property is known as well-balancing, and it is cur-
rently an active subject of research (see, e.g. [4,5,8,13,14,16,22,3,26,27,35–37]).

In [8], a high-order well-balanced finite volume scheme was developed within a general nonconservative
framework. The scheme uses high-order reconstruction of states and it is based on the generalized Roe
schemes introduced in [34], whose well-balance properties have been studied in [27]. In particular, it was suc-
cessfully applied to shallow water equations with bottom topography, using fifth-order WENO reconstruc-
tions in space and a third-order TVD Runge–Kutta scheme to advance in time.

An important difficulty arising in the simulation of free surface flows is the appearance of dry areas, due to
the initial conditions or as a result of the fluid motion. Examples are numerous: flood waves, dambreaks,
breaking of waves on beaches, etc. If no modifications are made, standard numerical schemes may fail in
the presence of wet/dry situations, producing spurious results. Several methods can be found in the literature
which overcome this problem: see [5,33] for a review.

When applied to shallow water equations, the Roe schemes introduced in [27] loose their well-balance prop-
erties in the presence of wet/dry transitions. Moreover, they may produce negative values of the thickness of
the water layer in the proximities of the wet/dry front. In [10], a modification was proposed that partially over-
comes this problem. Recently, a new technique for treating wet/dry fronts in the context of Roe schemes has
been presented in [9]. It consists in replacing, at the intercells where a wet/dry transition has been detected, the
corresponding linear Riemann problem by an adequate nonlinear one.

The main idea in the present work is to properly combine the scheme developed in [8] with the treatment of
wet/dry fronts introduced in [9]. This is by no means a trivial task, as many difficulties appear. In particular,
the numerical fluxes must be modified according to the kind of wet/dry transition found. Moreover, the vari-
ables to be reconstructed have to be properly chosen in order to maintain the well-balance property and, at the
same time, to preserve the positivity of the water height.

Specifically, the LHHR method introduced in [24] has been considered; we prove that this reconstruction
method is indeed positivity-preserving. The resulting scheme is third-order accurate on smooth wet regions
and first-order accurate near shocks and wet/dry transitions. Moreover, as a consequence of the positivity
of the reconstruction operator and the results in [9], the positivity of the water height is maintained (though
in some cases a reduction of the CFL number is necessary).

A two-dimensional extension of the scheme, based on the bi-hyperbolic method proposed in [29], has also
been carried out.

The paper is structured as follows. In Section 2 the precise form of the shallow water equations to be solved
is stated in the one-dimensional case, and some known definitions and results about nonconservative hyper-
bolic systems and generalized Roe schemes are given. The construction of the scheme developed in [8] is sum-
marized in Section 3, and an alternative form of the scheme in the case of shallow water equations with
topography is also provided. Section 4 is devoted to reviewing the technique introduced in [9] for the treatment
of wet/dry fronts. The core of the paper are Sections 5 and 6, where a high-order well-balanced scheme capa-
ble of dealing with wet/dry situations is constructed. In Section 7 a two-dimensional extension of the scheme is
also introduced. A number of numerical experiments are performed in Section 8 in order to test the properties
of the numerical scheme, both in the one- and two-dimensional cases. The paper finishes with some concluding
remarks and an Appendix, where the positivity of the LHHR method is proved.

2. Preliminaries

We consider the one-dimensional shallow water system given by
oh
ot þ

oq
ox ¼ 0;

oq
ot þ o

ox
q2

h þ
g
2
h2

� �
¼ gh dH

dx ;

8<: ð2:1Þ
which are the equations governing the flow of a shallow layer of fluid through a straight channel with constant
rectangular cross-section. The variable x refers to the axis of the channel and t is time; h(x, t) and q(x, t) rep-
resent the thickness and the discharge, respectively; g is the gravity constant; finally, H(x) is the depth function
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measured from a fixed level of reference. The fluid is supposed to be homogeneous and inviscid. The terms
modelling bottom friction or wind effects are not considered here for simplicity.

Addition of the equation [21]
oH
ot
¼ 0
to (2.1) allows us to write the system in nonconservative form:
W t þAðW ÞW x ¼ 0; x 2 R; t > 0: ð2:2Þ

The state variable is given by
W ¼
h

q

H

264
375
and the matrix AðW Þ is defined as
AðW Þ ¼
0 1 0

�u2 þ c2 2u �c2

0 0 0

264
375;
where u = q/h is the averaged velocity and c ¼
ffiffiffiffiffi
gh
p

.
As long as dry zones do not occur, the variable W takes its values in the open convex set
X ¼ f½h; q;H �T : h > 0; q 2 R;H 2 Rg:

Although in this article we will be eventually interested in the case where W belongs to X ¼ X[
f½0; 0;H �T : H 2 Rg, thus allowing the presence of dry zones, we will assume along this section that the con-
dition h > 0 holds. The treatment of wet/dry zones will be analyzed in Section 4.

The eigenvalues of the matrix AðW Þ are
k1 ¼ u� c; k2 ¼ uþ c; k3 ¼ 0:
If h > 0 and ki 6¼ 0, i = 1, 2, the system (2.2) is strictly hyperbolic and a complete set of eigenvectors is given by
RiðW Þ ¼
1

ki

0

264
375; i ¼ 1; 2; R3ðW Þ ¼

1

0

1� Fr2

264
375;
where Fr = u/c is the Froude number.
Notice that when (2.2) is strictly hyperbolic, the characteristic fields R1 and R2 are genuinely nonlinear,

while R3 is linearly degenerate. The integral curves of the third characteristic field are given by
q ¼ q0; hþ q2

2gh2
� H ¼ C; ð2:3Þ
where q0 and C are arbitrary constants. In the particular case q = 0, we obtain the water at rest states:
q ¼ 0; h� H ¼ C: ð2:4Þ

The nonconservative product AðW ÞW x does not make sense, in general, within the framework of the theory

of distributions. More precisely, the term ghHx does not make sense if both h and H have discontinuities at the
same points. However, following the theory developed by Dal Maso et al. [11], it is possible to give a sense to
the nonconservative product as a Borel measure. We refer to [11] for technical details.

Many of the usual numerical schemes designed for systems of conservation laws can be adapted to the dis-
cretization of the nonconservative system (2.2). This is the case of Roe schemes, whose general definition is
based on the concept of Roe linearization introduced in [34]: the interested reader is referred to that article
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and to [27] for a complete description of generalized Roe schemes. Here, we restrict ourselves to the particular
case in which the Roe matrices are given, for arbitrary states W0, W1 2 X, by
ÂðW 0;W 1Þ ¼
0 1 0

�û2 þ ĉ2 2û �ĉ2

0 0 0

264
375;
where
û ¼
ffiffiffiffiffi
h0

p
u0 þ

ffiffiffiffiffi
h1

p
u1ffiffiffiffiffi

h0

p
þ

ffiffiffiffiffi
h1

p ; ĉ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g

h0 þ h1

2

r
ð2:5Þ
are the usual Roe states [28].
In order to discretize the system, the space domain is divided into computing cells Ii = [xi�1/2, xi+1/2]. For the

sake of simplicity, it is assumed that the cells have constant size Dx and that xi+1/2 = iDx; thus, xi = (i � 1/2)Dx

is the center of the cell Ii. Let Dt be the time step and tn = nDt. Denote by W n
i ¼ ½hn

i ; q
n
i ;H

n
i �

T the approximation of
the cell averages on Ii of the exact solution, at time tn:
W n
i ffi

1

Dx

Z xiþ1=2

xi�1=2

W ðx; tnÞdt:
Given the states W n
i and W n

iþ1, the intermediate Roe matrix is defined as
Aiþ1=2 ¼ ÂðW n
i ;W

n
iþ1Þ:
As usual, if kiþ1=2
1 < kiþ1=2

2 < kiþ1=2
3 are the eigenvalues of Aiþ1=2, we define
A�iþ1=2 ¼ Kiþ1=2L
�
iþ1=2K

�1
iþ1=2;
where L�iþ1=2 ¼ diagfkiþ1=2
j : j ¼ 1; 2; 3g and Kiþ1=2 is a matrix whose columns are associated eigenvectors.

The numerical scheme can be written as follows:
W nþ1
i ¼ W n

i �
Dt
Dx

Aþi�1=2ðW n
i � W n

i�1Þ þA�iþ1=2ðW n
iþ1 � W n

i Þ
� �

: ð2:6Þ
In practice, only the two first components in (2.6) will be taken into account, as they give the evolution of the
variables h and q. The third component reduces to H nþ1

i ¼ H n
i , reflecting the fact that the depth function H is

constant in time.
In what follows, we deduce an equivalent writing for (2.6) that will be of particular interest in Section 4.

Define U = [h, q]T, so we denote W = [U, H]T. Using this notation, the system (2.1) can be interpreted as a
conservation law with source term (or balance law):
oU
ot
þ o

ox
F ðUÞ ¼ SðUÞ dH

dx
: ð2:7Þ
The flux function and the source term are given, respectively, by
F ðUÞ ¼
q

q2

h þ
g
2
h2

" #
; SðUÞ ¼

0

gh

� �
:

Define U n
i ¼ ½hn

i ; q
n
i �

T and consider the usual Roe matrix [28] defined as
Aiþ1=2 ¼
0 1

�ðun
iþ1=2Þ

2 þ ðcn
iþ1=2Þ

2 2un
iþ1=2

" #
;

where un
iþ1=2 and cn

iþ1=2 are given by (2.5) using the states U n
i and U n

iþ1. This matrix satisfies the so-called Roe
property:
Aiþ1=2ðUn
iþ1 � U n

i Þ ¼ F ðU n
iþ1Þ � F ðUn

i Þ:
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Dropping the third component in (2.6) we can deduce, after some straightforward calculations, the following
scheme:
U nþ1
i ¼ Un

i þ
Dt
Dx
ðF þi�1=2 � F �iþ1=2Þ; ð2:8Þ
where the numerical fluxes are given by
F �iþ1=2 ¼ F ðU n
i Þ þ P�iþ1=2 Aiþ1=2ðU n

iþ1 � U n
i Þ � Siþ1=2

� �
;

F þiþ1=2 ¼ F ðU n
iþ1Þ � Pþiþ1=2 Aiþ1=2ðUn

iþ1 � U n
i Þ � Siþ1=2

� �
:

ð2:9Þ
The numerical source term is defined as
Siþ1=2 ¼
0

ðcn
iþ1=2Þ

2ðHðxiþ1Þ � HðxiÞÞ

" #
:

The projection matrices P�iþ1=2 are
P�iþ1=2 ¼
1

2
Kiþ1=2ðI � sgnðKiþ1=2ÞÞK�1

iþ1=2;
where sgnðKiþ1=2Þ ¼ diagfsgnðkiþ1=2
j Þ : j ¼ 1; 2g, being kiþ1=2

1 , kiþ1=2
2 the eigenvalues of Ai+1/2 (which are the two

first eigenvalues of Aiþ1=2) and Ki+1/2 a matrix whose columns are associated eigenvectors.

Remark 2.1. Substracting the first equation in (2.9) from the second one and using the Roe property, gives the
equality
F þiþ1=2 � F �iþ1=2 ¼ Siþ1=2;
which implies an interface representation of the source term in (2.8).

Remark 2.2. The numerical scheme (2.8) is also equivalent to the Q-scheme of Roe upwinding the source term
introduced in [4].

Concerning the stability requirements, we consider a CFL condition of the form
max kiþ1=2
j

			 			 : 1 6 j 6 2; 0 6 i 6 M
n o Dt

Dx
6 l;
where 0 < l 6 1 and M is the number of cells into which the space domain is decomposed. Finally, the entro-
py-fix technique of Harten–Hyman [17] has also been applied.

As it is well-known, the presence of source or coupling terms in general systems of conservation laws can
affect the quality of the numerical solution when steady or nearly steady state solutions are approximated. To
handle such problems, the concept of well-balanced schemes has been considered by many authors (see, e.g.
[4,5,14,16,22,3], etc.). In [27], a general definition of well-balancing for general nonconservative problems
has been introduced.

In the context of shallow water equations (2.1), a scheme is well-balanced with order c if it approximates the
steady state solutions (2.3) with order c, and it is exactly well-balanced if the steady state solutions are exactly
computed. In [27] it is proved that the scheme (2.6) is well-balanced with order two for general stationary solu-
tions of the form (2.3). Moreover, it solves exactly stationary solutions corresponding to water at rest, that is,
it has the so-called C-property introduced and proved in [4].
3. High-order Roe schemes

The generalized Roe schemes introduced in the previous section are only first-order accurate. Recently, in
[8] a high-order extension of the scheme (2.6) based on reconstructions of the state variable W was introduced.
We give here a brief review about the construction of such extension. It will be assumed throughout this sec-
tion that no dry zones are present.
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First, we consider a reconstruction operator of order p, that is, an operator that assigns to a given sequence
{Wi} two new sequences, fW �

iþ1=2g and fW þ
iþ1=2g, such that
W �
iþ1=2 ¼ W ðxiþ1=2Þ þOðDxpÞ;
whenever
W i ¼
1

Dx

Z xiþ1=2

xi�1=2

W ðxÞdx
for some smooth function W(x).
Let now W iðtÞ ¼ ½ht

i; q
t
i;H

t
i�

T be the cell average of a regular solution W(x, t) of (2.2) on the cell Ii at a fixed
time t:
W iðtÞ ¼
1

Dx

Z xiþ1=2

xi�1=2

W ðx; tÞdx;
and denote by W �
iþ1=2ðtÞ ¼ ½h

�;t
iþ1=2; q

�;t
iþ1=2;H

�;t
iþ1=2�

T the corresponding reconstructions at the intercell xi+1/2. We
also introduce regular functions R�;tiþ1=2ðxÞ and Rþ;tiþ1=2ðxÞ defined, respectively, on [xi, xi+1/2] and [xi+1/2, xi+1],
such that
lim
x!x�

iþ1=2

R�;tiþ1=2ðxÞ ¼ W �
iþ1=2ðtÞ; lim

x!xþ
iþ1=2

Rþ;tiþ1=2ðxÞ ¼ W þ
iþ1=2ðtÞ:
Then, the following semidiscrete formulation of the high-order extension of the numerical scheme (2.6) is con-
sidered [8]:
W 0
iðtÞ ¼ �

1

Dx
Aþi�1=2ðW þ

i�1=2ðtÞ � W �
i�1=2ðtÞÞ

�
þA�iþ1=2ðW þ

iþ1=2ðtÞ � W �
iþ1=2ðtÞÞ

þ
Z xi

xi�1=2

AðRþ;ti�1=2ðxÞÞ
d

dx
Rþ;ti�1=2ðxÞdxþ

Z xiþ1=2

xi

AðR�;tiþ1=2ðxÞÞ
d

dx
R�;tiþ1=2ðxÞdx



; ð3:1Þ
where Aiþ1=2 is the intermediate Roe matrix corresponding to the states W �
iþ1=2ðtÞ and W þ

iþ1=2ðtÞ.

Remark 3.1. As we stated in Section 2, the nonconservative product AðW ÞW x is interpreted as a Borel
measure. Roughly speaking, the two first terms in the right-hand side of (3.1) are related to the singular part of
the measure, while the integral terms are associated to its regular part. Technical details can be found in [8].

If the balance-law formulation (2.7) is considered (as we will do in Section 6), (3.1) can be rewritten as
follows:
U 0iðtÞ ¼
1

Dx
eF þi�1=2ðtÞ � eF �iþ1=2ðtÞ
� �

; ð3:2Þ
where the numerical fluxes are
eF �iþ1=2ðtÞ ¼ F ðU�iþ1=2ðtÞÞ � F ðUþi ðtÞÞ � I�iþ1=2ðtÞ þ eP �iþ1=2
eAiþ1=2ðUþiþ1=2ðtÞ � U�i�1=2ðtÞÞ � eS iþ1=2

� �
ð3:3Þ
and
 eF þiþ1=2ðtÞ ¼ F ðUþiþ1=2ðtÞÞ � F ðU�iþ1ðtÞÞ � Iþiþ1=2ðtÞ � eP þiþ1=2
eAiþ1=2ðUþiþ1=2ðtÞ � U�iþ1=2ðtÞÞ � eS iþ1=2

� �
: ð3:4Þ
Let us explain the notation used in the above expressions. First, define U iðtÞ ¼ ½ht
i; q

t
i�

T and U�iþ1=2ðtÞ ¼ ½h
�;t
iþ1=2;

q�;tiþ1=2�
T, so W iðtÞ ¼ ½UiðtÞ;Ht

i�
T and W �

iþ1=2ðtÞ ¼ ½U�iþ1=2ðtÞ;H
�;t
iþ1=2�

T. Then eAiþ1=2 and eP �iþ1=2 are defined as in
Section 2, using Uþiþ1=2ðtÞ and U�iþ1=2ðtÞ instead of U n

iþ1 and Un
i , respectively. Besides, denote
R�;tiþ1=2ðxÞ ¼
r�;th;iþ1=2ðxÞ
r�;tq;iþ1=2ðxÞ
r�;tH ;iþ1=2ðxÞ

2664
3775
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and define R�;tiþ1=2ðxÞ ¼ ½r
�;t
h;iþ1=2ðxÞ; r

�;t
q;iþ1=2ðxÞ�

T. The approximations at the cell center xi are then given by
Uþi ðtÞ ¼ lim
x!xþi

Rt;�
iþ1=2ðxÞ; U�iþ1ðtÞ ¼ lim

x!x�
iþ1

Rt;þ
iþ1=2ðxÞ:
The reconstructed numerical source term at the intercell is defined as
eS iþ1=2 ¼
0

g
2
ðhþ;tiþ1=2 þ h�;tiþ1=2ÞðH

þ;t
iþ1=2 � H�;tiþ1=2Þ

" #
;

while in the cells is approximated by
I�iþ1=2ðtÞ ¼
0R xiþ1=2

xi
gr�;th;iþ1=2ðxÞ d

dx r�;tH ;iþ1=2ðxÞdx

" #
ð3:5Þ
and
Iþiþ1=2ðtÞ ¼
0R xiþ1

xiþ1=2
grþ;th;iþ1=2ðxÞ d

dx rþ;tH ;iþ1=2ðxÞdx

" #
: ð3:6Þ
In practice, the definition of the reconstruction operator provides a natural choice of the functions R�;tiþ1=2, as
the usual procedure for defining a reconstruction operator is the following: given a sequence {Wi} of values at
the cells, first an approximating function is constructed at the subcell [xi, xi+1/2], based on the values of Wi at a
given stencil:
R�iþ1=2ðx; W i�l; . . . ;W iþrÞ;
for some natural numbers l, r. This function is calculated by means of interpolation or approximation proce-
dures. Once R�iþ1=2 has been constructed, W �

iþ1=2 is calculated by taking the limit of R�iþ1=2 to the left of xi+1/2. If
the reconstruction operator is built following this procedure (as we will assume in the sequel), the natural
choice of R�;tiþ1=2 would be
R�;tiþ1=2ðxÞ ¼ R�iþ1=2ðx; W i�lðtÞ; . . . ;W iþrðtÞÞ:
The operator Rþ;tiþ1=2 is constructed in an analogous way.
The order of the numerical scheme (3.1) is stated in the following result [8]:

Theorem 3.2. Assume that A is of class C2 with bounded derivatives and A is also bounded. Suppose also that the

p-order reconstruction operator is such that, given a sequence defined by
W i ¼
1

Dx

Z xiþ1=2

xi�1=2

W ðxÞdx
for some smooth function W(x), we have that
R�iþ1=2ðx; W i�l; . . . ;W iþrÞ ¼ W ðxÞ þOðDxqÞ; x 2 ½xi; xiþ1=2�;
d

dx
R�iþ1=2ðx; W i�l; . . . ;W iþrÞ ¼ W 0ðxÞ þOðDxsÞ; x 2 ½xi; xiþ1=2�;
for some q, s P 0 (analogously for Rþiþ1=2). Then (3.1) is an approximation of order at least c = min(p, q + 1,

s + 1) to the system (2.2) in the following sense:
Aþi�1=2ðW þ
i�1=2ðtÞ � W �

i�1=2ðtÞÞ þA�iþ1=2ðW þ
iþ1=2ðtÞ � W �

iþ1=2ðtÞÞ þ
Z xi

xi�1=2

AðRþ;ti�1=2ðxÞÞ
d

dx
Rþ;ti�1=2ðxÞdx

þ
Z xiþ1=2

xi

AðR�;tiþ1=2ðxÞÞ
d

dx
R�;tiþ1=2ðxÞdx

¼
Z xiþ1=2

xi�1=2

AðW ðx; tÞÞW xðx; tÞdxþOðDxcÞ;



J.M. Gallardo et al. / Journal of Computational Physics 227 (2007) 574–601 581
for every smooth enough solution W(x, t), being W �
iþ1=2ðtÞ the associated reconstructions and R�;tiþ1=2ðxÞ the

approximation functions corresponding to the sequence of cell averages
W iðtÞ ¼
1

Dx

Z xiþ1=2

xi�1=2

W ðx; tÞdx:
Remark 3.3. In practice we will usually have q 6 p and s = q � 1. For example, if WENO reconstructions
[19,23] with stencils of n points are considered then p = 2n � 1, q = n and s = n � 1, so the order of the scheme
is c = n. This loss of accuracy is caused by the integral terms appearing in (3.1), as they involve reconstructed
values on the whole cell Ii and not only at the intercells. If ENO reconstructions [18] with stencils of n points
are used, we have p = q = n and r = n � 1, so c = n. In this case there is no order reduction.

In [8] it is also proved that, under the hypotheses of Theorem 3.2, the scheme (3.1) is exactly well-balanced
for still water solutions and well-balanced with order c for general stationary solutions.

Finally, in order to have a fully discretized scheme, an adequate high order scheme has to be applied to (3.1)
for time-stepping. In practice, we will consider the TVD Runge–Kutta schemes proposed in [15,31].

4. The MRoe scheme for shallow water equations

Recently, in [9] a new technique for dealing with the appearance of wet/dry areas when solving the shallow
water system (2.1) has been developed. This technique consists in replacing, at the intercells where a wet/dry
transition is detected, the approximate linear Riemann problem by a nonlinear one, that is exactly solved. In
these Riemann problems, one of the initial states corresponds to vacuum (vacuum Riemann problems have
also been used in [25] in the context of gas dynamics). The construction of the modified Roe scheme (MRoe
in the sequel) is summarized in this section.

We consider the form (2.8) of the Roe scheme, as it is more convenient in this context than the general form
(2.6). From time tn, the MRoe scheme advances in time using (2.8) with the following modification of the
numerical fluxes:

– If there is no wet/dry transition at the intercell xi+1/2, the fluxes are still given by (2.9).
– If a wet/dry transition is detected at xi+1/2, the fluxes are defined as
F �iþ1=2 ¼ F ðU�iþ1=2Þ; F þiþ1=2 ¼ F ðUþiþ1=2Þ;
where U�iþ1=2 and Uþiþ1=2 are the limits to the left and to the right of xi+1/2 of the solution of an appropriate
nonlinear Riemann problem.

Assume that a wet/dry transition has been detected at xi+1/2 at time tn. Without loss of generality, let us
suppose that the cell Ii is wet and Ii+1 is dry, i.e., hn

i > 0 and hn
iþ1 ¼ 0 (the description of the solutions in

the opposite case are similar). For the sake of simplicity, we also assume that xi+1/2 = 0 and tn = 0. The left
state W n

i is denoted by WL = [hL, qL, HL]T, while the right state W n
iþ1 has the form WR = [0, 0, HR]T. We also

define uL = qL/hL and cL ¼
ffiffiffiffiffiffiffiffi
ghL

p
. Finally, let W� and W+ denote the left and right limits at x = 0 of the solu-

tion of the nonlinear Riemann problem to be solved associated to the interface.
We summarize now the possible values of W±, depending on the relation between HL and HR. The details

can be found in [9].

� Case 1: HL = HR (flat bottom). As the bottom is constant in this case, the equations (2.1) form a system of
conservation laws in the variables U = [h, q]T, so the usual Riemann problem is considered:
U t þ F ðUÞx ¼ 0;

Uðx; 0Þ ¼
U L if x < 0;

U R if x > 0:

�8><>: ð4:1Þ
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The solution of this problem is continuous (see, e.g. [33]) and its value at x = 0 is given by
U� ¼
h0

q0

� �
¼

½0; 0�T if uL 6 �2cL;

ðuLþ2cLÞ2
9g ; ðuLþ2cLÞ3

27g

h iT

if � 2cL 6 uL 6 cL;

U L if uL P cL:

8>><>>: ð4:2Þ
The states W� = [U�, HL]T and W+ = [U+, HR]T are then considered.
� Case 2: HL < HR (decreasing bottom). The following nonlinear Riemann problem is considered at the

interface:
W t þAðW ÞW x ¼ 0;

W ðx; 0Þ ¼
W L if x < 0;

W R if x > 0:

�8<: ð4:3Þ
The simple waves corresponding to this nonconservative system are:

– rarefaction waves connecting states with the same value of H, which are identical to the usual rarefaction
waves of the conservative problem;

– shocks linking states with the same value of H and satisfying the usual Rankine–Hugoniot conditions;
– stationary contact discontinuities joining two states that belong to the same curve of the family (2.3).

For t > 0 and x < 0, the solution obtained in Case 1 is still valid here. Thus, we have a rarefaction wave con-
necting WL with the state W0 = [h0, q0, HL]T, where h0 and q0 are given by (4.2). Next, W0 is connected with a
new state W1 = [h1, q1, HR]T through a stationary contact discontinuity. Finally, W1 is linked to WR using
another rarefaction wave.

The limits of the solution of the nonlinear Riemann problem at x = 0 are given by
W � ¼
h0

q0

H L

264
375; W þ ¼ W 1 ¼

h1

q1

H R

264
375: ð4:4Þ
There are three cases to consider:

� If uL 6 cL then h1 = 0 and q1 = 0.
� If �2cL 6 uL 6 cL then h1 is the largest root of the polynomial
P 0ðhÞ ¼ h3 þ HL � H R �
q2

0

2gh2
0

� h0

 !
h2 þ q2

0

2g
and q1 = q0.
� If uL P cL then h1 is the smallest positive root of the polynomial
P LðhÞ ¼ h3 þ HL � H R �
q2

L

2gh2
L

� hL

 !
h2 þ q2

L

2g
ð4:5Þ
and q1 = qL.

Remark 4.1. In the case �2cL 6 uL 6 cL the state W� is critical and it can be linked to two different states
through a contact discontinuity, one of them subcritical and the other one supercritical. Therefore the solution
of the Riemann problem is not unique. We choose the subcritical one in order to avoid a transition (the states
at x < 0 are subcritical). That is the reason why we choose the largest positive root of P0(h).



J.M. Gallardo et al. / Journal of Computational Physics 227 (2007) 574–601 583
� Case 3: HL > HR (emerging bottom). As it was noticed in [9], in this case the Riemann problem (4.3) may
have no solution. Some different cases must be distinguished:

Case 3.1: The step acts as an obstacle for the fluid. This happens if

� uL 6 0 and HR 6 HL � hL; or
� uL P 0 and
HL � H R > hL þ
q2

L

2gh2
L

� 3q2=3
L

2g1=3
:

The above condition means that the mechanical energy at the wet cell is not enough to make the fluid go up
the step.

In this case, the following partial Riemann problem is considered:
U t þ F ðUÞx ¼ 0;

Uðx; 0Þ ¼ UL if x < 0;

Uðx; 0Þ 2 VR if x > 0;

8><>: ð4:6Þ
where VR ¼ f½h; 0�T : h P 0g. Its solution can be calculated using the theory developed in [12]. The limits of
the solution at x = 0 are given by
W � ¼
~h

0

HL

264
375; W þ ¼

0

0

HR

264
375; ð4:7Þ
where the value ~h is defined as follows:

� If uL 6 �2cL then ~h ¼ 0. In this case, the solution of (4.6) consists of a rarefaction wave connecting UL to
the vacuum state.
� If �2cL < uL 6 0 then
~h ¼ 1

g
uL

2
þ cL

� �2

:

Here, the solution of (4.6) is a rarefaction wave linking UL with a constant state region where the flow is at rest
and h ¼ ~h.
� If uL > 0 then ~h is the largest root of the polynomial
P ðhÞ ¼ h3 � hLh2 � h2
Lhþ h3

L �
2h
ghL

q2
L:
In this case the solution of (4.6) is an entropic shock linking UL with ½~h; 0�T.

Case 3.2: The flow at the wet cell is supercritical, it advances towards the step and it has mechanical energy
enough to go up the step, i.e., uL > 0 and
HL � H R < hL þ
q2

L

2gh2
L

� 3q2=3
L

2g1=3
:

In this case the solution of the nonlinear Riemann problem (4.3) can be easily calculated. Its structure is the
following: first a contact discontinuity is considered which connects WL with the state [h1, qL, HR]T, where h1 is
the smallest positive root of the polynomial PL(h) given by (4.5); then, this state is linked to [0, 0, HR]T

through another rarefaction wave. Thus we obtain:
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W � ¼ W L; W þ ¼
h1

qL

H R

264
375: ð4:8Þ
Case 3.3: In the remaining cases the flow has energy enough to go up the step, but the problem (4.3) cannot
be solved as easily as in the previous cases. In such situations, the scheme (2.8) is applied without
modifications.

We finish this section remarking two important properties of the MRoe scheme (their proofs can be found
in [9]):

Proposition 4.2. The MRoe scheme is well-balanced in the sense that it exactly solves the steady state solutions

corresponding to water at rest, including or not wet/dry situations.

Proposition 4.3. The positivity of the value of h produced at the cells where a wet/dry front has been detected is

assured except in case 3.3, where the scheme (2.8) is applied with no further modifications. In this latter case, a

restriction on the CFL condition can be considered in order to warrant the positivity of h.
5. High-order extension of the MRoe scheme

We develop in this section a well-balanced finite volume scheme for solving (2.1) that is capable of handling
wet/dry situations, being at the same time high-order accurate in smooth wet areas. As it was commented in
Section 1, the construction of such scheme is the main result of this article.

The ingredients to construct the scheme have been developed in Sections 3 and 4. The idea is to combine the
high order scheme (3.2) with the MRoe technique for treating wet/dry situations. The resulting scheme will be
called the High-order MRoe (HMRoe in the sequel) scheme.

The first step is to select adequate variables to be reconstructed. As it was done in [8], in order to have an
exactly well-balanced scheme for water at rest solutions, the surface elevation g = h � H has to be recon-
structed. On the other hand, it is also important to choose a reconstruction of the water height h that preserves
positivity. Thus, the variables considered are (h, q, g); if ð~h; ~q; ~gÞ represent the reconstructed values, the recon-
structed depth is then defined as ~H ¼ ~h� ~g.

We give now a complete description of the semidiscrete HMRoe scheme. First of all, a tolerance he must be
fixed in order to distinguish between wet and dry cells. Assume that the cell averages Wi = [hi, qi, Hi]

T at a
given time t are known (for the sake of clarity, dependence on time is dropped). Then:

Reconstruction step

� Define the cell averages gi = hi � Hi.
� Use the cell averages on an adequate stencil to build reconstructing functions for each variable a 2 {h, q, g}:
r�a;iþ1=2ðxÞ; x 2 ½xi; xiþ1=2�; rþa;iþ1=2ðxÞ; x 2 ½xiþ1=2; xiþ1�;
and compute the reconstructed values at the intercell:
a�iþ1=2 ¼ r�a;iþ1=2ðxiþ1=2Þ; a 2 fh; q; gg:
Define also
r�H ;iþ1=2ðxÞ :¼ r�h;iþ1=2 � r�g;iþ1=2ðxÞ;
and consider the reconstruction operators
R�iþ1=2ðxÞ ¼ ½r�h;iþ1=2ðxÞ; r�q;iþ1=2ðxÞ�
T
:

The reconstructed states at the intercell are U�iþ1=2 ¼ ½h�iþ1=2; q
�
iþ1=2�

T; also, define W �
iþ1=2 ¼ ½U�iþ1=2;H

�
iþ1=2�

T,
where H�iþ1=2 :¼ h�iþ1=2 � g�iþ1=2.
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� If a stencil contains a dry cell, simply take W �
iþ1=2 ¼ W n

i or W þ
iþ1=2 ¼ W n

iþ1, depending on the case. Notice
that this causes a loss of accuracy near a wet/dry front.
� The reconstructed velocity is defined as u�iþ1=2 ¼ q�iþ1=2=h�iþ1=2; however, in order to avoid cancellation prob-

lems near a wet/dry front, we set u�iþ1=2 ¼ 0 if h�iþ1=2 < he.

Numerical fluxes

� In the wet-bed case, the numerical fluxes eF �iþ1=2 are defined by (3.3) and (3.4).
� If a wet/dry transition is detected, apply the technique introduced in Section 4 with the states W L ¼ W �

iþ1=2

and W R ¼ W þ
iþ1=2. Denote by eW þ

iþ1=2 and eW �
iþ1=2 the states given by (4.2), (4.4), (4.7), or (4.8), depending on

the case (in Case 3.3, we simply take eW �
iþ1=2 as W �

iþ1=2). Then the numerical fluxes eF �iþ1=2 are defined again by
(3.3) and (3.4) using eW �

iþ1=2, except in Case 3.1 where we take
eF �iþ1=2ðtÞ ¼F ðU�iþ1=2ðtÞÞ � F ðUþi ðtÞÞ;eF þiþ1=2ðtÞ ¼F ðUþiþ1=2ðtÞÞ � F ðU�iþ1ðtÞÞ;
due to the fact that the Riemann problem (4.6) does not involve the effects of the source term directly in the
equation.

Once the semidiscrete scheme has been defined, the system (3.2) is discretized in time by using a standard
solver.

Following the results in [8,9], the HMRoe scheme is exactly well-balanced for water at rest solutions
(including or not dry areas), and well-balanced with the same accuracy of the reconstruction operator for gen-
eral stationary solutions.

On the other hand, notice that the positivity of the reconstruction of h is not sufficient to guarantee the
positivity of the scheme. However, from Proposition 4.3 we can deduce that the HMRoe scheme preserves
the positivity of h, although in same cases a restriction on the CFL condition may be needed.

6. Choice of the reconstruction operator: the hyperbolic HMRoe scheme

In [8] parabolic WENO reconstruction operators [19] were considered for the implementation of the
high-order scheme (3.1) in wet domains, providing very good results. However, when dry or almost dry
areas are present, the non-monotone character of parabolas may lead to negative (non-physical) values
of the water height h (even though the WENO technique provides a way for damping oscillations, this
is not sufficient in general for avoiding the appearance of negative values of h). Although in the experi-
ments performed the negative values of h are relatively small, they may lead the computer program to
crash.

Instead of reconstructions of parabolic type, we will focus here on third-order hyperbolic reconstructions.
Specifically, Marquina’s local hyperbolic harmonic method (LHHR) introduced in [24] will be applied. This
method prescribes at each cell Ii a hyperbola that preserves the cell-average, interpolates the lateral deriv-
ative of the solution with smaller absolute value, and assigns as the central derivative the harmonic mean of
the lateral derivatives. This method is LTVB (local total variation bounded), that is, the total variation of
each hyperbola is bounded by MDx, for some constant M. Details on the method can be found in [24].

Remark 6.1. The main drawback of the LHHR method is the loss of total variation at local extrema,
produced by a loss of accuracy at those points. Indeed, when the harmonic limiter is used the reconstruction
may degenerate to second-order near extrema. Some improvements on this point can be achieved by choosing
different kinds of limiters: see [30]. However, in our numerical experiments the best results have been obtained
when the harmonic limiter is used, specially near wet/dry fronts.

Remark 6.2. There is also relevant recent work on extensions of hyperbolic reconstructions in [1]. Applica-
tions of this new kind of reconstructions within the HMRoe framework are currently under investigation.
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The main reasons for choosing hyperbolic reconstructions are listed below:

– Positivity: if the values of the cell averages of h are non-negative at each cell of the stencil, the reconstructed
value is also non-negative (for the sake of clarity in the presentation, the proof of this fact has been included
in the Appendix).

– The reconstructions are third-order accurate on the whole cell Ii (except at local extrema, where the accu-
racy may degenerate to second-order; see Remark 6.1). Thus, from the results of Section 3 (we would have
p = q = 3 and r = 2, so c = 3 in Theorem 3.2) the scheme will be also third-order accurate on smooth wet
areas and well-balanced with order three for general stationary solutions.

– Compactness of the stencil. Each hyperbola is constructed using only three cell-values (while, for example,
a parabolic WENO method needs five cell-values for each lateral reconstruction). This makes the method
to work robustly when used with shock-capturing schemes, and allows an easier analysis of wet/dry
situations.

– The total variation of hyperbolas are much smaller then those of parabolas, thus reducing the oscillating
behaviour near shocks.

Finally, for time discretization a third-order TVD Runge–Kutta method [31,15] has been considered.
7. A two-dimensional extension of the HMRoe scheme in quadrilateral meshes

A natural extension of Marquina’s hyperbolic reconstruction method to non-uniform meshes in two space
dimensions has been recently introduced in [29]. This extension, known as the bi-hyperbolic method, considers
at each computational cell a combination of two hyperbolas obtained using the LHHR algorithm in both spa-
tial directions. When quadrilateral (not necessarily uniform) meshes are used, the bi-hyperbolic method pro-
vides a third-order reconstruction on the whole cell.

The bi-hyperbolic method allows to extend the HMRoe scheme to a two-dimensional setting on quadrilat-
eral meshes, as the technique introduced in Section 4 can be applied componentwise with no further modifi-
cations. As stated in [29], third-order of accuracy is reached on smooth wet regions; however, only first-order
of accuracy can be expected near shocks and wet/dry transitions. Positivity of the water height is also pre-
served, under an appropriate CFL restriction.
8. Numerical experiments

In this section we test the performance of the hyperbolic HMRoe scheme defined in Section 6. The integral
terms (3.5) and (3.6) are approximated by means of a Gaussian quadrature with three points. The CFL num-
ber is set to 0.9 unless otherwise stated. The wet/dry tolerance he has been taken as 10�6 and the gravity con-
stant is g = 9.81.
8.1. Exact well-balance property for still water solutions

We consider a simple test to verify that solutions corresponding to water at rest including a wet/dry tran-
sition are exactly computed with the HMRoe scheme.

The bottom consists of an obstacle defined by the depth function [36]
HðxÞ ¼ 10� 5e�0:4ðx�5Þ2 ; 0 6 x 6 10;
and the initial water height has been taken as 2.5 on both sides of the obstacle (see Fig. 1). The HMRoe
scheme has been run until time t = 0.5 using a mesh with 200 nodes.

As expected, the scheme preserves the stationary solution up to round-off error. Indeed, the L1 errors
obtained for h and q using double precision are, respectively, 4.08E�14 and 5.75E�14.
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Fig. 1. Flow at rest. Bottom topography and free surface elevation computed with the HMRoe scheme at time t = 0.5.

J.M. Gallardo et al. / Journal of Computational Physics 227 (2007) 574–601 587
8.2. One-dimensional accuracy test

A test proposed in [36] is considered here to measure the accuracy of the HMRoe scheme. The problem is
defined by the bottom function
Table
HMRo

Numb

100
200
400
800

1600

One-di
HðxÞ ¼ 2� sin2ðpxÞ; x 2 ½0; 1�;

and the initial conditions
hðx; 0Þ ¼ 5þ ecosð2pxÞ; qðx; 0Þ ¼ sinðcosð2pxÞÞ;

imposing periodic boundary conditions. As the exact solution for this test is not known, in order to compute
the numerical errors we have considered a reference solution calculated using the HMRoe scheme with 6400
nodes.

The solutions have been computed up to time t = 0.1, when the solution still remains smooth. Table 1
shows the L1 errors and numerical orders of accuracy obtained with CFL number 0.8. As expected, we do
not get full third-order of accuracy for this test. The reason is that monotone reconstructions as LHHR suffer
from clipping of extrema leading to a loss of global accuracy. For comparison, we have also included the
results obtained with the first order MRoe scheme in Table 2.

8.3. Dambreak over a plane

The ability of the HMRoe scheme for computing the advance of wet/dry fronts is tested in the experiments
considered in this section, that were previously analyzed in [9]. The computational domain considered is the
interval [�15,15] and the bottom is given by the depth function
HðxÞ ¼ 1� x tanðaÞ;
1
e scheme

er of cells L1 error h L1 order h L1 error q L1 order q

1.7E�03 – 1.4E�02 –
2.7E�04 2.65 2.4E�03 2.62
4.8E�05 2.50 4.4E�04 2.44
8.3E�06 2.55 7.3E�05 2.57
1.4E�06 2.61 1.2E�05 2.60

mensional accuracy test. L1 numerical errors and orders.



Table 2
MRoe scheme

Number of cells L1 error h L1 order h L1 error q L1 order q

100 2.7E�02 – 1.6E�01 –
200 1.5E�02 0.89 8.9E�02 0.89
400 7.7E�03 0.94 4.7E�02 0.93
800 4.0E�03 0.96 2.4E�02 0.95

1600 2.0E�03 0.98 1.2E�02 0.97

One-dimensional accuracy test. L1 numerical errors and orders.
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for some angle a. The initial conditions considered are
qðx; 0Þ ¼ 0; hðx; 0Þ ¼
HðxÞ if x < 0;

0 otherwise:

�

With regard to the boundary conditions, the discharge q(0, t) = 0 is imposed at x = �15 while a free boundary
condition is considered at x = 15. The space step has been taken as Dx = 0.05.

For this problem, the exact position and velocity of the advancing wet/dry front can be exactly computed
(see [9]):
xf ðtÞ ¼2t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cosðaÞ

p
� 1

2
gt2 tanðaÞ;

uf ðtÞ ¼2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gh0 cosðaÞ

p
� gt tanðaÞ;
where h0 = 1 in this case.
Depending on the sign of tan(a), three different kinds of wet/dry fronts may appear. As in [9], we consider

the values a = 0 (flat bottom), a = p/60 (emerging topography) and a = �p/60 (bottom with increasing
depth). The topography and free surface of the fluid at time t = 0 in the case a = p/60 are represented in Fig. 2.

The time evolution until t = 2 of the positions of the wet/dry fronts for each experiment are shown in Figs.
3a, c and e; the corresponding velocities are depicted in Figs. 3b, d and f. As it can be seen, the HMRoe scheme
produces more accurate results than the MRoe scheme. Also, in Fig. 4, a comparison with the analytical solu-
tion near the wet/dry front in the case a = 0 is also shown.

The analysis of CPU times shows that, in the three cases considered, the MRoe scheme is about four times
faster than the HMRoe scheme.
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Fig. 2. Dambreak problem over a non-flat bottom (case a = p/60). Initial condition.
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Fig. 3. Dambreak over a plane. Left: front position vs. time. Right: front velocity vs. time.
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Fig. 4. Dambreak over a flat plane. Zoom of the wet/dry front.
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8.4. Dry bed generation

We first consider an experiment over flat bottom proposed by Toro in [33]. The initial conditions are
hðx; 0Þ ¼ 0:1; qðx; 0Þ ¼
�0:3 if x < 5;

0:3 if x > 5:

�

In this case, a dry bed is formed in the middle of two rarefactions waves travelling in opposite directions. The
generation of the dry bed makes this problem numerically difficult.

The results obtained at time t = 1 with both the HMRoe and the MRoe schemes are compared with the
exact solution in Figs. 5 and 6. The computational domain is the interval [0, 10] and the space step is
Dx = 0.05. In this case, the CFL number has been reduced to 0.8 in order to avoid the appearance of negative
values of the water height (see Proposition 4.3). A zoom of the dry zone is shown in Fig. 7; as it can be
observed, the MRoe scheme leaves a small wet zone between the two rarefaction waves. For this test, the
HMRoe scheme consumes about three times the CPU time needed by the MRoe scheme.

Let us consider now a modification of the previous test by including a non-trivial topography. Specifically,
we consider the test proposed in [13], where the depth function is given by
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Fig. 5. Dry bed generation on a flat bottom. Free surface elevation at time t = 1.
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Fig. 6. Dry bed generation on a flat bottom. Discharge at time t = 1.
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Fig. 7. Dry bed generation on a flat bottom. Zoom of the dry zone.
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HðxÞ ¼
13 if 25=3 < x < 25=2;

14 otherwise;

�

in the domain [0, 25]. The initial water height is 10 and the initial discharge is
qðx; 0Þ ¼
�350 if x < 50=3;

350 otherwise:

�

The results obtained at times 0, 0.05, 0.25, 0.45 and 0.65, using 300 nodes and CFL number 0.8, are shown in
Figs. 8 and 9. These results are in good agreement with those obtained in [13]. Regarding the CPU time, in this
test the MRoe scheme is about four times faster.

8.5. Drain on a non-flat bottom

We consider the bottom topography defined by
HðxÞ ¼ 0:05ðx� 10Þ2 if 8 6 x 6 12;

0:2 otherwise;

(
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Fig. 8. Dry bed generation on a non-flat bottom. Free surface elevation obtained with the HMRoe scheme at different times.

0 5 10 15 20 25
–500

–400

–300

–200

–100

0

100

200

300

400

t=0
t=0.05
t=0.25
t=0.45
t=0.65

Fig. 9. Dry bed generation on a non-flat bottom. Discharge obtained with the HMRoe scheme at different times.
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in the domain [0, 25], and initial conditions h(x, 0) = H(x) + 0.3 and q(x, 0) = 0. A free boundary condition is
imposed on the left and an outlet condition on a dry bed (see [7]) on the right. The flow reaches a stationary
state with h = 0.2 to the left of the bump and h = 0 to its right. This experiment was proposed in [13].

The HMRoe scheme has been applied with 300 nodes and CFL number 0.8, at times t = 0, 10, 20, 100 and
1000. The results obtained are shown in Figs. 10 and 11, and can be directly compared with those presented in
[13].

8.6. Oscillating lake

The following experiment was proposed in [2]. The bottom topography given by
HðxÞ ¼ 0:52ðcosðpðx� 0:5Þ=0:5Þ þ 1Þ; x 2 ½0; 1�;

simulates a lake bed with non-flat bottom and non-vertical shores. Initially, the water surface at rest is per-
turbed with a small sinusoidal wave:
hðx; 0Þ ¼ max 0;HðxÞ � 0:1þ 0:04 sin
x� 0:5

0:25

� 

þ 0:04 maxð0; 0:1� HðxÞÞ

� 
� �
:
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Fig. 10. Drain on a non-flat bottom. Free surface elevation computed using the HMRoe scheme at different times.
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Fig. 11. Drain on a non-flat bottom. Discharge computed using the HMRoe scheme at different times.
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Then the flow oscillates and, at each time step, an interface between wet and dry cells has to be computed at
each shore. The results obtained with the HMRoe scheme at time t = 19.87, when the water reaches its higher
level on the left shore, is shown in Fig. 12. We also observe that the scheme maintains the periodic regime for
all time. The computations have been performed with 200 nodes and CFL number equal to 0.8.

8.7. Two-dimensional accuracy test

As it was done in the one-dimensional case, we consider a test proposed in [36] in order to measure the
accuracy of the bi-hyperbolic HMRoe scheme. Specifically, the bottom topography is defined as
Hðx; yÞ ¼ 2� sinð2pxÞ � cosð2pyÞ;

the initial water height is
hðx; y; 0Þ ¼ 10þ esinð2pxÞ cosð2pyÞ;

while the initial discharges are given by
q1ðx; y; 0Þ ¼ sinðcosð2pxÞÞ sinð2pyÞ; q2ðx; y; 0Þ ¼ cosð2pxÞ cosðsinð2pyÞÞ:

The computational domain is the unit square and periodic boundary conditions have been imposed.



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

t=0

t=19.87

bottom

Fig. 12. Oscillating lake. Free surface elevation: initial condition and solution calculated with the HMRoe scheme at time t = 19.87.
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Table 3 shows the results obtained at time t = 0.05, as shocks developed later for this problem. The solution
computed with the bi-hyperbolic HMRoe scheme on a mesh with 800 · 800 grid points has been taken as ref-
erence solution. The CFL number has been taken as 0.5. As it can be seen, third-order of accuracy is achieved.
Unlike the one-dimensional case, there is no order reduction due to local extrema, mainly due to the more
suitable form of the bi-hyperbolic reconstructing functions.

8.8. Flooding on an open channel

We consider a topography based on [20], which represents a channel of 75 m length and 30 m width with
three mounds. The shape of the mounds is defined by the function H(x, y) = max(0, m1, m2, m3), where
Table
Two-d

Numb

25 ·
50 ·

100 · 1
200 · 2
400 · 4

L1 num
m1 ¼ 1� 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 30Þ2 þ ðy � 22:5Þ2

q
;

m2 ¼ 1� 0:1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 30Þ2 þ ðy � 7:5Þ2

q
;

m3 ¼ 2:8� 0:28

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� 47:5Þ2 þ ðy � 15Þ2

q
:

The topography has been discretized using a 60 · 150 quadrilateral mesh.
The upper and lower boundaries are assumed to be solid walls, while the right boundary represents an open

wall and the left boundary simulates an inflow having the following form:

– From t = 0 to t = 300, the height is h = 0.5 and the velocity in the x direction is u = 1.0.
– From t = 300 to t = 900, we have h = 1.0 and u = 1.0.
3
imensional accuracy test

er of cells Error h Order h Error q1 Order q1 Error q2 Order q2

25 1.52E�02 – 4.13E�02 – 9.10E�02 –
50 3.47E�03 2.13 8.33E�03 2.31 2.19E�02 2.05
00 5.45E�04 2.67 1.26E�03 2.72 3.50E�03 2.65
00 7.56E�05 2.85 1.77E�04 2.84 4.79E�04 2.87
00 9.79E�06 2.95 2.25E�05 2.97 6.28E�05 2.93

erical errors and orders.
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The results obtained at several times using the bi-hyperbolic HMRoe scheme with CFL number 0.9 are
depicted in Fig. 13. It should be noticed that our results cannot be directly compared with those in [20], as
we have not considered here turbulent viscosity nor friction terms. However, our results are consistent with
the topography, also providing a good resolution of shocks and wet/dry transitions.
Fig. 13. Flooding on an open channel. From top to bottom: results obtained at times t = 8, 30, 300 and 900, using the bi-hyperbolic
HMRoe scheme. Left: 3-D representation. Right: velocity fields.



Fig. 14. Dambreak on a closed channel. 3-D view of the stationary state obtained with the bi-hyperbolic HMRoe scheme. The scale
represents water height.

Fig. 15. Dambreak on an closed channel (upper view). From top to bottom and left to right: results obtained at times t = 10, 15, 20, 25, 30
and 40, using the bi-hyperbolic HMRoe scheme.
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8.9. Dambreak on a closed channel

The same topography as in the previous test has been considered in [6] for simulating a dambreak. In this
case all the boundaries are solid walls, so the water cannot leave the rectangular domain.

The dam is situated at x = 16 and contains 900 m3 of water. The scheme has been run until the
stationary state is reached (Fig. 14), using a 60 · 150 mesh and CFL number 0.9. The results obtained
at different times are shown in Fig. 15. As in the previous experiment, the results are physically
consistent.

8.10. A two-dimensional oscillating lake

Consider the paraboloidal topography defined by the depth function
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16. 2-D oscillating lake: surface elevation vs. x-coordinate, for y = 0. Results obtained with the bi-hyperbolic HMRoe scheme.
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Fig. 17. 2-D oscillating lake: velocities at time t = 2T. Left: u. Right: v. Results obtained with the bi-hyperbolic HMRoe scheme.
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together with the periodic analytical solution of the two-dimensional shallow water equations stated in [32]:
hðx; y; tÞ ¼ max 0;
rh0

a2
2x cosðxtÞ þ 2y sinðxtÞ � rð Þ þ Hðx; yÞ

� 

;

uðx; y; tÞ ¼ �rx sinðxtÞ; vðx; y; tÞ ¼ rx cosðxtÞ;
where u and v are the velocities in the x and y directions, and x ¼
ffiffiffiffiffiffiffiffiffi
2gh0

p
=a. The values a = 1, r = 0.5 and

h0 = 0.1 have been considered for this test.
The computations have been performed using a quadrilateral mesh with Dx = Dy = 0.02 and CFL number

0.9. Comparisons between the numerical and the analytical free surfaces at different times are shown in
Fig. 16, where T represents the oscillation period. Although a small distortion near the shorelines can be
observed in some cases, they can be reduced using a finer spatial discretization. On the other hand, the planar
form of the free surface is maintained throughout the computation.

To obtain accurate approximations of the velocity is a much more difficult issue. In Fig. 17 are shown com-
parisons for both the u and v velocities at time t = 2T. As it can be observed, the position of the wet/dry fronts
have been accurately captured, despite the small perturbations appearing in the wet zone.
9. Concluding remarks

In this paper, a high-order finite volume scheme for solving shallow water equations in one and two space
dimensions has been developed within a nonconservative framework. The scheme is able to handle wet/dry
situations, and it is exactly well-balanced for water at rest solutions. It reaches third-order of accuracy on
smooth wet regions, being only first-order accurate near shocks and wet/dry transitions. Imposing an ade-
quate CFL restriction, the scheme preserves the positivity of the water height. Extensive numerical experi-
ments have been performed in order to demonstrate the capabilities of the scheme.
Appendix. Positivity of the LHHR method

The positivity of the LHHR technique, which is a key point in Section 6, is proved in this section.
First of all, let us set the notation to be used in this section. Let v(x) be the function to be reconstructed and

consider the stencil {Ii: i = �1, 0, 1}, with Ii = [xi � 1/2, xi+1/2] and xi±1/2 = xi ± Dx/2. Define the lateral deriv-
atives dL = (v0 � v�1)/Dx and dR = (v1 � v0)/Dx, where vi is the average of v(x) on the cell Ii.

We consider the version of the LHHR algorithm stated in [30]:
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Let define tol = Dx2,
if (jdLj 6 tol) and (jdRj 6 tol) then

d0 ¼ 0 and a ¼ 0

else

d0 ¼ ðsgnðdLÞ þ sgnðdRÞÞ
jdLdRj
jdLj þ jdRj

if jdLj 6 jdRj then

a ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd0=dLj

p
� 1

� �
else

a ¼ 2ð1�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jd0=dRj

p
Þ

end

end

Once d0 and a have been defined, the reconstructing hyperbola on the cell I0 is given by
r0ðxÞ ¼ v0 þ d0

Dx
a2

log
2� a
2þ a

� 

� aDx

aðx� x0Þ � Dx

� 

:

Some useful remarks ([24], Lemma 2.2):

(1) a 2 ð�2ð
ffiffiffi
2
p
� 1Þ; 2ð

ffiffiffi
2
p
� 1ÞÞ, independently of Dx.

(2) r0(x) is well-defined on I0 and is monotone.
(3) When a = 0, r0(x) reduces to the linear function
r0ðxÞ ¼ v0 þ d0ðx� x0Þ: ðA:1Þ

Assume now that vi > 0 for each i = �1, 0, 1; we are going to see that r0(x) > 0 for every x 2 I0. We only need
to consider the case in which dLdR > 0, as r0(x) reduces to the constant value v0 in any other case.

We focus on the case dL > 0 and dR > 0 (the opposite case can be treated in an analogous way). We have
that
d0 ¼ 2
dLdR

dL þ dR
and r0(x) is an increasing function. Three possibilities have to be considered:

(1) dL = dR.
(2) dL < dR.
(3) dL > dR.

In case (1) we have a = 0, so r0(x) has the form (A.1). As d0 = dL = dR, then
r0ðx�1=2Þ ¼ v0 � d0

Dx
2
¼ v0 þ v�1

2
> 0:
Using that r0(x) is increasing, we deduce that r0(x) > 0 for x 2 I0.
Consider now case (2), in which a ¼ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffi
d0=dL

p
� 1Þ 2 ð0; 2ð

ffiffiffi
2
p
� 1ÞÞ. The vertical asymptote of r0(x) is

located in (x1/2,1), so r0(x) is well-defined on I�1 [ I0, where it is strictly increasing. It will more convenient
to write r0(x) in the form
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r0ðxÞ ¼ a0 þ
k0

x� x0 þ c0

;

with
a0 ¼ v0 þ d0
Dx
a2

log
2� a
2þ a

� 

; c0 ¼ �

Dx
a
; k0 ¼ �d0

Dx
a

� 
2

:

Clearly, in order to prove the positivity of r0(x) on I0 it is sufficient to see that r0(x�1/2) > 0, or, equivalently,
a0 þ k0ðc0 � Dx=2Þ�1
> 0:
From the definitions of c0 and k0, we have:
k0ðc0 � Dx=2Þ�1 ¼ 2d0

Dx
að2þ aÞ : ðA:2Þ
On the other hand, we have that
a0 > v0 � 2d0

Dx
að2þ aÞ � 4d0

Dx

ð2þ aÞ2
;

that follows from the definition of a0 and the trivial inequality log 2�a
2þa

� �
> � 2a

2þa� 2a
2þa

� �2

for

a 2 ð0; 2ð
ffiffiffi
2
p
� 1ÞÞ. Now, using the definition of a, the above expression can be written as
a0 > v0 � dLDx� 2
d0Dx

aðaþ 2Þ : ðA:3Þ
Combining (A.2) and (A.3), we deduce:
a0 þ k0ðc0 � Dx=2Þ�1
> v0 � dLDx ¼ v�1 > 0;
as desired.
Finally, case (3) can be analyzed in a similar way as case (2).
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